hello大家好,我是本站的小编子芊,今天来给大家介绍一下2012湖南高考数学,2011湖南高考数学的相关知识,希望能解决您的疑问,我们的知识点较多,篇幅较长,还希望您耐心阅读,如果有讲得不对的地方,您也可以向我们反馈,我们及时修正,如果能帮助到您,也请你收藏本站,谢谢您的支持!

在2012年湖南高考数学试卷中,有一道题目引起了广大考生的热议。这道题目涉及到了代数运算和几何知识,要求考生计算一个平行四边形的对角线长度。对许多考生来说,这是一道相对较难的题目。

2012湖南高考数学

与此2011年湖南高考数学试卷也有一道引人注目的题目。这道题目考查了概率和统计知识,要求考生计算从一组数字中选出不同数字组成的三位数的可能个数。这道题目对于考生的逻辑思维和概率计算能力提出了很高的要求。

这两道题目都体现了湖南高考数学试卷的特点,既注重考查基础概念和运算能力,又注重考察学生的逻辑思维和解决问题的能力。这种综合性的考查方式,旨在培养学生的综合运用能力,提升他们解决实际问题的能力。

对于考生来说,参加高考是一个重要的里程碑,是进入大学的敲门砖。高考数学是每个考生都必须面对的挑战。借鉴过去的高考试题,我们可以看到,湖南高考数学试卷并不追求题目的难度,而是更注重考察学生对数学知识的应用能力和解决问题的能力。考生在备考过程中,不仅要重视对数学知识的理解和掌握,还要注重训练自己的思维能力和解决问题的方法。

2012年湖南高考数学试卷中的代数运算和几何题以及2011年湖南高考数学试卷中的概率和统计题,无疑都是对考生综合能力的一次全面考查。参加高考的考生们应该充分准备,提升自己的数学知识水平和解决问题的能力,才能在高考中取得优异的成绩。

2012湖南高考数学,2011湖南高考数学

2011年普通高等等学校招生全国统一模拟考试(湖南卷)

数学(理工农医类)

一、 选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 若 a<0, >1,则 (D)

A.a>1,b>0 B.a>1,b<0 C. 0<a<1, b>0 D. 0<a<1, b<0

2.对于非0向时a,b,“a//b”的确良 (A)

A.充分不必要条件 B. 必要不充分条件

C.充分必要条件 D. 既不充分也不必要条件

3.将函数y=sinx的图象向左平移 0 <2 的单位后,得到函数y=sin 的图象,则 等于 (D)

A. B. C. D.

4.如图1,当参数 时,连续函数 的图像分别对应曲线 和 , 则 [ B]

A B

C D 5.从10名大学生毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数位 w.w.w.k.s.5.u.c.o.m [ C]

A 85 B 56 C 49 D 28

6. 已知D是由不等式组 ,所确定的平面区域,则圆 在区域D内

的弧长为 [ B]

A B C D

7.正方体ABCD— 的棱上到异面直线AB,C 的距离相等的点的个数为(C)

A.2 B.3 C. 4 D. 5 w.w.w.k.s.5.u.c.o.m

8.设函数 在( ,+ )内有定义。对于给定的正数K,定义函数取函数 = 。若对任意的 ,恒有 = ,则w.w.w.k.s.5.u.c.o.m

A.K的最大值为2 B. K的最小值为2

C.K的最大值为1 D. K的最小值为1 【D】

二、填空题:本大题共7小题,每小题5分,共35分,把答案填在答题卡中对应题号后的横线上

9.某班共30人,其中15人喜爱篮球运动,10人喜爱兵乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为_12__

10.在 的展开式中, 的系数为___7__(用数字作答)

11、若x∈(0, )则2tanx+tan( -x)的最小值为2 . w.w.w.k.s.5.u.c.o.m

12、已知以双曲线C的两个焦点及虚轴的两个端点为原点的四边形中,有一个内角为60 ,则双曲线C的离心率为

13、一个总体分为A,B两层,其个体数之比为4:1,用分层抽样方法从总体中抽取一个容量为10的样本,已知B层中甲、乙都被抽到的概率为 ,则总体中的个数数位 50 。

14、在半径为13的球面上有A , B, C 三点,AB=6,BC=8,CA=10,则w.w.w.k.s.5.u.c.o.m

(1)球心到平面ABC的距离为 12 ;

(2)过A,B两点的大圆面为平面ABC所成二面角为(锐角)的正切值为 3

15、将正⊿ABC分割成 ( ≥2,n∈N)个全等的小正三角形(图2,图3分别给出了n=2,3的情形),在每个三角形的顶点各放置一个数,使位于⊿ABC的三遍及平行于某边的任一直线上的数(当数的个数不少于3时)都分别一次成等差数列,若顶点A ,B ,C处的三个数互不相同且和为1,记所有顶点上的数之和为f(n),则有f(2)=2,f(3)= ,…,f(n)= (n+1)(n+2)三.解答题:本大题共6小题,共75分。解答应写出文字说明、证明过程或演算步骤。

16.(本小题满分12分)

在 ,已知 ,求角A,B,C的大小。

解:设

由 得 ,所以

又 因此 w.w.w.k.s.5.u.c.o.m

由 得 ,于是

所以 , ,既

由A= 知 ,所以 , ,从而或 ,既 或 故或 。

17.(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的. 、 、 ,现在3名工人独立地从中任选一个项目参与建设。w.w.w.k.s.5.u.c.o.m

(I)求他们选择的项目所属类别互不相同的概率;

(II)记 为3人中选择的项目属于基础设施工程、民生工程和产业建设工程的人数,求 的分布列及数学期望。

解:记第1名工人选择的项目属于基础设施工程、民生工程和产业建设工程分别为事件 , , ,i=1,2,3.由题意知 相互独立, 相互独立, 相互独立, , , (i,j,k=1,2,3,且i,j,k互不相同)相互独立,且P( )=,P( )= ,P( )=

(1) 他们选择的项目所属类别互不相同的概率

P=3!P( )=6P( )P( )P( )=6 =

(2) 解法1 设3名工人中选择的项目属于民生工程的人数为 ,由己已知, -B(3, ),且 =3 。

所以P( =0)=P( =3)= = ,P( =1)=P( =2)= = w.w.w.k.s.5.u.c.o.m

P( =2)=P( =1)= =

P( =3)=P( =0)= =

故 的分布是0 1 2 3

P 的数学期望E =0 +1 +2 +3 =2

解法2 第i名工人选择的项目属于基础工程或产业工程分别为事件 ,

i=1,2,3 ,由此已知, D, 相互独立,且

P( )-( , )= P( )+P( )= + =

所以 -- ,既 , w.w.w.k.s.5.u.c.o.m 故 的分布列是1 2 318.(本小题满分12分)

如图4,在正三棱柱 中,

D是 的中点,点E在 上,且 。

(I) 证明平面 平面

(II) 求直线 和平面 所成角的正弦值。w.w.w.k.s.5.u.c.o.m 解 (I) 如图所示,由正三棱柱 的性质知 平面

又DE 平面A B C ,所以DE AA .

而DE AE。AA AE=A 所以DE 平面AC C A ,又DE 平面ADE,故平面ADE 平面AC C A 。

(2)解法1 如图所示,设F使AB的中点,连接DF、DC、CF,由正三棱柱ABC- A B C 的性质及D是A B的中点知A B C D, A B DF w.w.w.k.s.5.u.c.o.m

又C D DF=D,所以A B 平面C DF,

而AB∥A B,所以

AB 平面C DF,又AB 平面ABC,故

平面AB C 平面C DF。

过点D做DH垂直C F于点H,则DH 平面AB C 。w.w.w.k.s.5.u.c.o.m

连接AH,则 HAD是AD和平面ABC 所成的角。

由已知AB= A A ,不妨设A A = ,则AB=2,DF= ,D C = ,

C F= ,AD= = ,DH= = — ,

所以 sin HAD= = 。

即直线AD和平面AB C 所成角的正弦值为 。解法2 如图所示,设O使AC的中点,以O为原点建立空间直角坐标系,不妨设

A A = ,则AB=2,相关各点的坐标分别是

A(0,-1,0), B( ,0,0), C (0,1, ), D( ,- , )。

易知 =( ,1,0), =(0,2, ), =( ,- , )w.w.w.k.s.5.u.c.o.m

设平面ABC 的法向量为n=(x,y,z),则有解得x=- y, z=- ,

故可取n=(1,- , )。

(n )= = = 。

由此即知,直线AD和平面AB C 所成角的正弦值为 。

19.(本小题满分13分)

某地建一座桥,两端的桥墩已建好,这两墩相距 米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为256万元,距离为 米的相邻两墩之间的桥面工程费用为 万元。假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为 万元。(Ⅰ)试写出 关于 的函数关系式;(Ⅱ)当 =640米时,需新建多少个桥墩才能使 最小?

解 (Ⅰ)设需要新建 个桥墩,

所以 (Ⅱ) 由(Ⅰ)知, 令 ,得 ,所以 =64当00. 在区间(64,640)内为增函数,

所以 在 =64处取得最小值,此时,

故需新建9个桥墩才能使 最小。

20(本小题满分13分)

在平面直角坐标系xOy中,点P到点F(3,0)的距离的4倍与它到直线x=2的距离的3倍之和记为d,当P点运动时,d恒等于点P的横坐标与18之和w.w.w.k.s.5.u.c.o.m (Ⅰ)求点P的轨迹C;(Ⅱ)设过点F的直线I与轨迹C相交于M,N两点,求线段MN长度的最大值。解(Ⅰ)设点P的坐标为(x,y),则 3︳x-2︳

由题设

当x>2时,由①得 化简得

当 时 由①得 化简得

故点P的轨迹C是椭圆 在直线x=2的右侧部分与抛物线 在直线x=2的左侧部分(包括它与直线x=2的交点)所组成的曲线,参见图1

(Ⅱ)如图2所示,易知直线x=2与 , 的交点都是A(2, ),

B(2, ),直线AF,BF的斜率分别为 = , = .

当点P在 上时,由②知. ④

当点P在 上时,由③知w.w.w.k.s.5.u.c.o.m ⑤

若直线l的斜率k存在,则直线l的方程为

(i)当k≤ ,或k≥ ,即k≤-2 时,直线I与轨迹C的两个交点M( , ),N( , )都在C 上,此时由④知

∣MF∣= 6 - ∣NF∣= 6 - w.w.w.k.s.5.u.c.o.m

从而∣MN∣= ∣MF∣+ ∣NF∣= (6 - )+ (6 - )=12 - ( + )

由 得 则 , 是这个方程的两根,所以 + = *∣MN∣=12 - ( + )=12 -

因为当 w.w.w.k.s.5.u.c.o.m

当且仅当 时,等号成立。

(2)当 时,直线L与轨迹C的两个交点 分别在 上,不妨设点 在 上,点 上,则④⑤知, 设直线AF与椭圆 的另一交点为E 所以 。而点A,E都在 上,且有(1)知 w.w.w.k.s.5.u.c.o.m

若直线 的斜率不存在,则 = =3,此时线段MN长度的最大值为

21.(本小题满分13分)

对于数列 若存在常数M>0,对任意的 ,恒有 w.w.w.k.s.5.u.c.o.m

则称数列 为B-数列

(1) 首项为1,公比为 的等比数列是否为B-数列?请说明理由;

请以其中一组的一个论断条件,另一组中的一个论断为结论组成一个命题

判断所给命题的真假,并证明你的结论;

(2) 设 是数列 的前 项和,给出下列两组论断;

A组:①数列 是B-数列 ②数列 不是B-数列

B组:③数列 是B-数列 ④数列 不是B-数列

请以其中一组中的一个论断为条件,另一组中的一个论断为结论组成一个命题。

判断所给命题的真假,并证明你的结论;

(3) 若数列 都是 数列,证明:数列 也是 数列。

解(1)设满足题设的等比数列为 ,则 ,于是因此| - |+| - |+…+| - |=

因为 所以 即w.w.w.k.s.5.u.c.o.m 故首项为1,公比为 的等比数列是B-数列。

(2)命题1:若数列 是B-数列,则数列 是B-数列次命题为假命题。设 ,易知数列 是B-数列,但 由 的任意性知,数列 是B-数列此命题为。

命题2:若数列 是B-数列,则数列 是B-数列

此命题为真命题

因为数列 是B-数列,所以存在正数M,对任意的 有w.w.w.k.s.5.u.c.o.m

即 。于是所以数列 是B-数列。

(III)若数列 { }是 数列,则存在正数 ,对任意的 有注意到 同理: w.w.w.k.s.5.u.c.o.m

记 ,则有 因此 +

故数列 是 数列w.w.w.k.s.5.u.c.o.m

2011高考数学全国卷1

2011年高考题全国卷II数学试题·理科全解全析科目: 数学 试卷名称 2011年普通高等学校招生全国统一考试·全国卷II(理科)知识点检索号新课标题目及解析(1)复数 , 为 的共轭复数,则 (A) (B) (C) (D) 【思路点拨】先求出的 共轭复数,然后利用复数的运算法则计算即可。【精讲精析】选B. .(2)函数 的反函数为(A) (B) (C) (D) 【思路点拨】先反解用y表示x,注意要求出y的取值范围,它是反函数的定义域。【精讲精析】选B.在函数 中, 且反解x得 ,所以 的反函数为 .(3)下面四个条件中,使 成立的充分而不必要的条件是(A) (B) (C) (D) 【思路点拨】本题要把充要条件的概念搞清,注意寻找的是通过选项能推出a>b,而由a>b推不出选项的选项.【精讲精析】选A.即寻找命题P使P 推不出P,逐项验证可选A。(4)设 为等差数列 的前 项和,若 ,公差 , ,则 (A)8 (B)7 (C)6 (D)5【思路点拨】思路一:直接利用前n项和公式建立关于k的方程解之即可。思路二:利用 直接利用通项公式即可求解,运算稍简。【精讲精析】选D.(5)设函数 ,将 的图像向右平移 个单位长度后,所得的图像与原图像重合,则 的最小值等于(A) (B) (C) (D) 【思路点拨】此题理解好三角函数周期的概念至关重要,将 的图像向右平移 个单位长度后,所得的图像与原图像重合,说明了 是此函数周期的整数倍。【精讲精析】选C. 由题 ,解得 ,令 ,即得 . (6)已知直二面角 ,点 ,C为垂足, 为垂足.若AB=2,AC=BD=1,则D到平面ABC的距离等于(A) (B) (C) (D) 1 【思路点拨】本题关键是找出或做出点D到平面ABC的距离DE,根据面面垂直的性质不难证明 平面 ,进而 平面ABC,所以过D作 于E,则DE就是要求的距离。【精讲精析】选C.如图,作 于E,由 为直二面角, 得 平面 ,进而 ,又 ,于是 平面ABC,故DE为D到平面ABC的距离。在 中,利用等面积法得 .(7)某同学 有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有(A)4种 (B)10种 (C)18种 (D)20种【思路点拨】本题要注意画册相同,集邮册相同,这是重复元素,不能简单按照排列知识来铸。所以要分类进行求解。【精讲精析】选B.分两类:取出的1本画册,3本集邮册,此时赠送方法有 种;取出的2本画册,2本集邮册,此时赠送方法有 种。总的赠送方法有10种。(8)曲线y= +1在点(0,2)处的切线与直线y=0和y=x围成的三角形的面积为(A) (B) (C) (D)1【思路点拨】利用导数求出点(0,2)切线方程然后分别求出与直线y=0与y=x的交点问题即可解决。【精讲精析】选A. 切线方程是: ,在直角坐标系中作出示意图,即得 。(9)设 是周期为2的奇函数,当0 ≤x≤1时, = ,则 =(A) - (B) (C) (D) 【思路点拨】解本题的关键是把通过周期性和奇偶性把自变量 转化到区间[0,1]上进行求值。【精讲精析】选A.先利用周期性,再利用奇偶性得: .(10)已知抛物线C: 的焦点为F,直线 与C交于A,B两点 .则 =(A) (B) (C) (D) 【思路点拨】方程联立求出A、B两点后转化为解三角形问题。【精讲精析】选D.联立 ,消y得 ,解得 .不妨设A在x轴上方,于是A,B的坐标分别为(4,4),(1,-2),可求 ,利用余弦定理 .(11)已知平面α截一球面 得圆M,过圆心M且与α成 二面角的平面β截该球面得圆N.若该球面的半径为4,圆M的面积为4 ,则圆N的面积为(A)7 (B)9 (C)11 (D)13 【思路点拨】做出如图所示的图示,问题即可解决。【精讲精析】选B.作示意图如,由圆M的面积为4 ,易得 ,中, 。故 .(12)设向量 满足 ,则 的最大值等于(A)2 (B) (c) (D)1【思路点拨】本题按照题目要求构造出如右图所示的几何图形,然后分析观察不难得到当线段AC为直径时, 最大.【精讲精析】选A.如图,构造,所以A、B、C、D四点共圆,分析可知当线段AC为直径时, 最大,最大值为2.(13)(1- )20的二项展开式中,x的系数与x9的系数之差为: .【思路点拨】解本题一个掌握展开式的通项公式,另一个要注意 .【精讲精析】0. 由 得 的系数为 , x9的系数为 ,而 .(14)已知a∈( , ),sinα= ,则tan2α= 【思路点拨】本题涉及到同角三角函数关系式,先由正弦值求出余弦值一定要注意角的范围,再求出正切值,最后利用正切函数的倍角公式即可求解。【精讲精析】 .由a∈( , ),sinα= 得 ,.(15)已知F1、F2分别为双曲线C: - =1的左、右焦点,点A∈C,点M的坐标为(2,0),AM为∠F1AF2的平分线.则|A F2| = .【思路点拨】本题用内角平分线定理及双曲线的定义即可求解。【精讲精析】6.由角平分线定理得: ,故 .(16)己知点E、F分别在正方体ABCD-A1B2C3D4的棱BB 1 、CC1上,且B1E=2EB, CF=2FC1,则面AEF与面ABC所成的二面角的正切值等于 .【思路点拨】本题应先找出两平面的交线,进而找出或做出二面角的平面角是解决此问题的关键,延长EF必与BC相交,交点为P,则AP为面AEF与面ABC的交线.【精讲精析】 .延长EF交BC的延长线于P,则AP为面AEF与面ABC的交线,因为 ,所以 为面AEF与面ABC所成的二面角的平面角。(17)(本小题满分l0分)(注意:在试题卷上作答无效)△ABC的内角A、B、C的对边分别为a、b、c.己知A—C=90°,a+c= b,求C.【思路点拨】解决本题的突破口是利用正弦定理把边的关系转化为角的正弦的关系,然后再结合A—C=90°,得到 .即可求解。【精讲精析】选D.由 ,得A为钝角且 ,利用正弦定理, 可变形为 ,即有 ,又A、B、C是 的内角,故或 (舍去)所以 。所以 .(18)(本小题满分12分)(注意:在试题卷上作答无效)根据以往统计资料,某地车主购买甲种 保险 的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立(I)求该地1位车主至少购买甲、乙两种保险中的l种的概率;(Ⅱ)X表示该地的l00位车主中,甲、乙两种保险都不购买的车主数。求X的期望。 【思路点拨】解本题应首先主出该车主购买乙种保险的概率为p,利用乙种保险但不购买甲种保险的概率为0.3,即可求出p=0.6.然后(ii)利用相互独立事件的概率计算公式和期望公式计算即可.【精讲精析】设该车主购买乙种保险的概率为p,由题意知: ,解得 。(I) 设所求概率为P1,则 .故该地1位车主至少购买甲、乙两种保险中的1种的概率为0.8。(II) 对每位车主甲、乙两种保险都不购买的概率为 。所以X的期望是20人。(19)如图,四棱锥 中, , ,侧面 为等边三角形, .(Ⅰ)证明: ;(Ⅱ)求 与平面 所成角的大小.【思路点拨】本题第(I)问可以直接证明,也可建系证明。(II)建立空间直角坐标系,利用空间向量的坐标运算计算把求角的问题转化为数值计算问题,思路清晰思维量小。【精讲精析】计算SD=1, ,于是 ,利用勾股定理,可知 ,同理,可证 又 , .(II)过D做 ,如图建立空间直角坐标系D-xyz,A(2,-1,0),B(2,1,0),C(0,1,0), 可计算平面SBC的一个法向量是 .所以AB与平面SBC所成角为 .(20)设数列 满足 且 (Ⅰ)求 的通项公式;(Ⅱ)设 【思路点拨】解本题突破口关键是由式子 得到 是等差数列,进而可求出数列 的通项公式.(II)问求出 的通项公式注意观察到能采用裂项相消的方式求和。【精讲精析】 (I) 是公差为1的等差数列,所以 (II) .(21)已知O为坐标原点,F为椭圆 在y轴正半轴上的焦点,过F且斜率为 的直线 与C交与A、B两点,点P满足 (Ⅰ)证明:点P在C上;(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上.【思路点拨】方程联立利用韦达定理是解决这类问题的基本思路,注意把 用坐标表示后求出P点的坐标,然后再结合直线方程把P点的纵坐标也用A、B两点的横坐标表示出来。从而求出点P的坐标代入椭圆方程验证即可证明点P在C上。(II)此问题证明有两种思路:思路一:关键是证明 互补.通过证明这两个角的正切值互补即可,再求正切值时要注意利用倒角公式。思路二:根据圆的几何性质圆心一定在弦的垂直平分线上,所以根据两条弦的垂直平分线的交点找出圆心N,然后证明N到四个点A、B、P、Q的距离相等即可.【精讲精析】 (I)设 直线 ,与 联立得 由 得 ,所以点P在C上。(II)法一: 同理所以 互补,因此A、P、B、Q四点在同一圆上。法二:由 和题设知, ,PQ的垂直平分线 的方程为 …①设AB的中点为M,则 ,AB的垂直平分线 的方程为 …②由①②得 、 的交点为 ,, ,故 . 所以A、P、B、Q四点在同一圆圆N上.(22)(本小题满分12分)(注意:在试题卷上作答无效)(Ⅰ)设函数 ,证明:当 时, ;(Ⅱ)从编号1到100的100张卡片中每次随即抽取一张,然后放回,用这种方式连续抽取20次,设抽得的20个号码互不相同的概率为 .证明: 【思路点拨】本题第(I)问是利用导数研究单调性最值的常规题,不难证明。第(II)问证明如何利用第(I)问结论是解决这个问题的关键也是解题能力高低的体现。【精讲精析】(I) 所以 在 上单增。当 时, 。(II) 由(I),当x<0时, ,即有 故 于是 ,即 .利用推广的均值不等式: 另解: ,所以 是上凸函数,于是 因此 ,故 综上:

2012湖南高考数学

湖南高考总分750分(语文150分,数学150分,外语150分,文科综合/理科综合300分)。湖南高考属于普通高等学校招生全国统一考试,即我们俗称的高考。现行的高考方案有多种:

1、“3+X”方案。

这是目前国内大部分省市区采用的高考方案,3”指“语文、数学、外语”,“X”指由指学生根据自己的意愿,自主从文科综合(政治、历史、地理)和理科综合(物理、化学、生物)2个综合科中选择一个考试科目。此方案是目前全国应用最广,最成熟的高考方案。总分750分(语文150分,数学150分,外语150分,文科综合/理科综合300分)。

而湖南省的高考方案恰好就属于这种方案。2、“3+学业水平测试+综合素质评价”方案。

此方案目前为江苏省所使用。语文160分(文科加考40分加试题)、数学160分(理科加考40分加试题)、外语120分,满分480分。

3、“3+3”方案

此方案目前为海南省所使用。海南省高考考试共6科目,语文、数学、英语为公共科目,文科生单独考政治、历史、地理,理科生单独考物理、化学、生物。

4、改革方案

应用地区:上海市、浙江省(3+3)

上海方案:

必考科目:语文/数学/外语每科150分,其中英语一年两考,取最高分。

选考科目:物理,化学,生物,政治,历史,地理选3门,每科70分,按照A A+……比例给分,总分660分。

浙江方案:

必考科目:语文/数学/外语每科150分。

选考科目:政治、历史、地理、物理、化学、生物、技术,学生要选择3门作为高考选考科目。

选考科目每年安排2次考试,分别在4月和10月进行。每门总共安排3次统一考试,考生可自行决定参加时间,每门科目最多参加2次,选考科目成绩实行等级赋分,如成绩在前1%者赋分100分加入高考总成绩。总分750分。

扩展资料湖南省异地高考方案:外省籍随迁子女接受义务教育后,可通过中考录取到流入地普通高中学习,或凭初中毕业证书通过注册入学进入流入地中等职业学校学习;

自高中一年级起(含高一的第二学期)在流入地普通高中学校就读,取得就读学校学籍,并参加了湖南普通高中学业水平考试的应、往届毕业生,可凭学籍证明和其父母居住证在湖南报名参加普通高等学校招生考试;

在湖南连续就读两年以上(含两年)的中等职业学校应、往届毕业生,可参加湖南省普通高等学校对口招生考试。

参考资料来源:百度百科-普通高等学校招生全国统一考试

高考数学

一、可将高考数学的内容划分为6部分:

1.函敌:概念、图像性质、具体的初等函数、导数及其应用。

2代数:数列、不等式、三角基本变换。

3.立体几何:线与线、线与面、面与面的平行和垂直关系二三视图。

4.解析几何:直线方程、圆锥曲线的性质、轨迹方程、坐标法等。

5.概率统计:古典概型、离故型随机变量分布等。

6.工具类:集合、逻辑知识推理证明方法、向量,算法等(蕴含在问题中)。二、高考特点:

1、重视基础(从命题角度):

考查内容是基础的,相当部分试囤考查要求是基本的,考查基本概念、性质、法则,定理、公式。

解决问题的所用方法是常规的(通性、通法),无须技巧。

设计综合性的较难试题作适当铺垫,使大多数考生能上手。

高考数学试卷设计了部分与课本例题、习题相近的基础题,从题型、形式(呈现的),考生不陌生。2、重视能力:

高考命题确立以能力立意命题为指导思想。

以数学学科能力为基础。

以思维能力为枝心。

全面考查学生的应具备的各种能力。

2013年湖南高考数学试卷及答案

149分

7月23日,湖南招生考试信息港公布了湖南省2020年普通高考单科优秀名单。语文最高分为137分;文科数学和理科数学最高分均为149分;英语最高分为150分;文科综合最高分为275分;理科综合最高分为296分。

今天的关于2012湖南高考数学,2011湖南高考数学的知识介绍就讲到这里,如果你还想了解更多这方面的信息,记得收藏关注本站。